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Abstract: Unlike mainstream financial analysis, our research suggests that the market 

which trades a single stock is actually stratified. For a given stock, the expected return in 

each stratified market forms a unique relationship with the expected market return. The 

revealing of such a multi-level market structure challenges the well-established capital 

asset pricing hypothesis and the prevailing equilibrium analysis. To stratify a market 

which trades a single financial asset, we rely on the maximal overlap discrete wavelet 

transform (MODWT). Akaike and Bayesian information criteria are applied for selecting 

the appropriate model to reveal the relationship between stock returns and market returns 

in each stratified market. Monte Carlo experiments are then used to verify the consistency 

of an estimator.  Our study has significant theoretical implications. If a market for a single 

asset can be stratified, it begs the question whether a modified or alternative theory is 

needed for explaining financial market activities. More significantly, our analysis raises 

the issue of limited usefulness of the concept of equilibrium in financial economics. If the 

expected asset return on a financial instrument is actually composed of several 

components, is the equilibrium return made of several equilibrium components or an 

aggregation of stratified market disequilibria?  
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1. Introduction 
 

Financial economists are often interested in the relationship between asset returns and 

market returns. The well-established and widely accepted paradigm is the capital asset 
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pricing model (CAPM). This model has been challenged by behavioral economists on the 

grounds of bounded rationality and heterogeneous agents (Barberis and Thaler, 2003). 

Beyond laboratory experiments, economists have also been able to construct analytically 

tractable models, known as the heterogeneous agent models (HAMs), to simulate the 

behavior of heterogeneous agents with bounded rationality (Hommes, 2006; LeBaron, 

2006). 
 

In all previous studies, economists and psychologists investigate investment behavior over 

time, and the market for trading any single asset is not further divided into submarkets. If 

investors are not fully rational and heterogeneous, they may apply different strategies and 

criteria to trade the same type of instruments and hold these instruments for various 

lengths of time. Due to the limited availability of data, conventional time series analysis 

does not allow a researcher to investigate trading frequencies. This research suggests an 

alternative. When investment behavior is examined in both time and frequency 

dimensions, we are able to stratify a market for trading any single asset into multiple 

layers. In each stratified market, the expected return on an asset is correlated with an 

expected segmented-market return.  
 

In spectrum analysis, long term variations are associated with low frequency waves, while 

short-term fluctuations are captured by high frequency waves. Fourier analysis has often 

been criticized because it only captures the relationship between variables in terms of 

frequencies. To compensate, windowed Fourier analysis has been used to capture the 

changes over time. This technique, however, has also been faulted on its incapability to 

associate frequencies with varying time frames. Wavelet analysis, on the other hand, is 

capable of analyzing frequencies associated with various time scales. That is, when a 

wavelet has a short time support, it allows an analyst to examine a short-lived 

phenomenon; if a wavelet has a long time support, it can be used to study a long lasting 

periodic behavior. Thus, wavelet analysis has appealing statistical advantages over 

traditional techniques.  
 

Market stratification is possible because the multi-resolution analysis of wavelets provides 

a natural framework for analyzing frequency patterns associated with different time scales. 

To remove the issue of sensitivity to the starting and ending point of a series, the technique 

of maximal overlap discrete wavelet transfer (MODWT), as suggested by Percival and 

Walden (2000), is used in this study.  
 

Over the years, natural and social scientists have paid growing attention to wavelet 

analysis. By providing a comprehensive theoretical framework, Daubechies (1992) lays 

the foundation of wavelet analysis. A detailed review of wavelets and filter banks is given 

by Strang and Nguyen (1996). Donoho and Johnstone (1994) and Gao (1997) broaden the 
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applicability of wavelet theory to analyze time series with non-stationary process and long 

memory. Using wavelet coefficients to estimate the spectral density, Neumann (1996) is 

able to derive an asymptotic normal distribution from a non-Gaussian process. Priestley 

(1996) suggests the use of wavelet analysis to develop evolutionary spectra for time-

dependent spectral analysis. A comprehensive review of wavelet methods for time series 

analysis is given by Percival, and Walden (2000). Addressing technical needs, Press, et al. 

(2007) provide numerical recipes for scientific computing. Mallat (2008) provides a 

review of the multi-resolution analysis (MRA) and wavelet transform modulus maxima 

method, among other fundamental concepts, and their applications in signal processing. 
 

Ramsey (1999) demonstrates wide applicability of wavelet theory in economics and 

finance. Using compactly supported wavelets, Jensen (1999, 2000) applies a maximum 

likelihood method to estimate long memory parameters. Lee and Hong (2001) develop a 

widely applicable wavelet-related consistency test for serial correlation. The usefulness of 

wavelet filter methods in these fields is also shown by Gençay, Selçuk and Whitcher 

(2001). Nason and Sapatinas (2002) use the wavelet packet transfer function to model 

non-stationary time series. In and Kim (2013) offer a thorough review of the wavelet 

theory in finance. He and Lin (forthcoming) provides a bird’s eye view of wavelet filter 

methods in economics and finance. 
 

The arrangement of this article is as follows. Section 2 shows a discrete ARMA and 

MODWT model and investigates the properties of the wavelet coefficient. Relying on the 

Whittle approach, AIC and BIC are used for choosing the competing models associated 

with an arbitrary level decomposition. Section 3 presents the Monte Carlo experiments to 

examine the power of the test. Section 4 applies our model to analyze the stock returns of 

Yulon Motor Company, and to measures stratified systematic risks. Section 5 offers 

concluding remarks that summarize this article’s contributions. 
 

2. Wavelet-based Spectral and Spectral Density Functions  
 

To investigate the risk-return relationship, we incorporate an ARMA process and spectrum 

into wavelet analysis. Consider a time series {ut} with a stationary ARMA (p,q):  
  

( ) ( )t tL u L a  ,      (1) 
 

where L is the lag operator, and at is white noise with variance 2
. Terms 

1( ) (1 ... )p

pL L L     
 
and 

1( ) (1 ... )q

qL L L      , respectively, represent the AR 

and MA polynomial operator functions with roots outside the closed unit circle.  
 

Following Daubechies (1992) as well as Percival and Walden (2000), the wavelet and 

scaling coefficients resulting from the maximal overlap discrete wavelet transform 
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(MODWT) at level j are: 
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where (2 1)( 1) 1j

jN N    , with N as the length of the filter, /2

, ,2 j
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with  = 0,…, Nj - 1. If j =1, then 
1, j jh h

 
and 

1, j jg g . Note that, for MODWT, the 

wavelet coefficient, 𝑤 𝑗 ,𝑡 , results from the application of a mother wavelet to a time series 

at level j centered at time t, which can be used to detect the occurrence of an event at a 

specific point of time. 
 

In spectrum analysis, Whittle method is often considered as a generalized and efficient 

technique of parameter estimation. For our purpose, the use of wavelet analysis 

necessitates the development of an applicable Whittle method. Unlike the traditional 

Whittle estimator associated with periodogram covering the whole length of a time series, 

the Whittle estimator used here must allow us to investigate the relationship among 

periodograms associated with short as well as long time periods. Furthermore, the Whittle 

estimator based on MODWT must also be stable, efficient and consistent. 
 

As scale level j increases, the associated time scale becomes longer and the frequency of 

each interval decreases. Figure 1 shows the spectra of wavelet coefficients at different 

levels, based on the Daubenchies recipe with N = 8. The superimposition of these figures 

on each other offers a hint on the relationship among the spectra, and therefore on the 

Whittle estimator. The transform weight matrix, according to Percival and Walden (2000), 

can be constructed by lettingW Pu , or 
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where 
,V JP  and 

,W jP , j = 1,…, J, are T  T matrices, and T is the sample size. Thus, P is a 



Empirical Economics Review 7(1): (March 2017)                                               5 
 

{(J + 1) T}  T matrix, with the scaling coefficients 
,1 ,2 ,( , , , )J J J J TV v v v     , and wavelet 

coefficients 
,1 ,2 ,( , , , )j j j j TW w w w     . Note that

TP P I 
 
and y P W  . The original 

series can be recovered by 
, , ,1 1V J J W J J Wu P V P W P W        . Alternatively, we have 

 

, ,

1

J

y J y j

j

u S D


   ,       (2) 

where 
, ,y J V J JS P V  , 

, ,y j w j jD P W   for j = 1 to J, and 

1

J

J J j j

j

u u V V W W


       . If the 

covariance matrix of u is , then the quadratic form used to construct the maximal 

likelihood function by vector y becomes 
 

1 1

, , ,1 , , ,1( ) ( )y J y J y y J y J yu u S D D S D D               . (3) 

 

This equation can then be used for deriving the Whittle estimator. A linear model is now 

developed for evaluating the relationships among variables. First, we show the 

conventional form and then revise it as a multi-level model with varying time scales. A 

conventional linear model can be stated as: 
 

 t t ty x u   
 

where  and xt are k 1 vectors, ( ) ( )t tL u L a  , and at is the white noise. To simplify 

the calculation, we denote the covariance by 2( ) u uE uu    Σ , where 

1 2( , ,..., )Tu u u u  . The related log likelihood function can then be constructed as: 
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where y is a T  1 vector, x is a T  k matrix, and  is a k  1 vector. This is equivalent to 
 

 

2

1

, , ,1 , , ,12

1
ln ln 2 ln ln

2 2 2

1
( ) ( ),

2

u

x J x J x u x J x J x

T T

y S D D y S D D

 

     




   

        

L Σ

Σ     

 

 

Here 
,x jS  and 

,x jD
 
indicate the smooth and detailed parts, respectively, of a decomposition 

series at level j with scale 2
j
, and each is a T  k matrix. An increase in the value of j is 

accompanied by a decrease in frequencies, suggesting the correlation is associated with a 

longer period of time. To examine the correlation at a given time scale, we construct a 
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multi-level relationship model: 
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 (5) 

 

where  is the smooth-part relationship and j is the detailed-part relationship of level j. 

Again, for each increase in the level of j, the coefficients are associated with a correlation 

covering a longer length of time.  

 

In equation (5), Σ𝑢
−1 is unknown. To estimate this matrix, the Whittle method is used due 

to its simplicity and efficiency. Assuming ut is a stationary process and fu() is it’s 

associated spectrum, we have 
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According to Beran (1994, (5.38) and (5.55)) and Priestley (1981, p. 741), we obtain  
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for any zt. Thus, the number of the parameters 

associated with 2

1 1 1{ , ,..., , ,..., , , ,..., }p q J         
 
is equivalent to M = p + q + J  k + 3. 

The Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) 

can be applied to determine the appropriate level of decomposition.  
 

Using the well-known Wald criterion, 
1ˆ ˆR V R   ~

2

r , where 
1V R R  I , we test a set 

of r linear restrictions on , with the null hypothesis H0: R = 0 against the alternative 

hypothesis H1: R  0. Given the appropriate Whittle estimator and wavelet scale, this test 

determines the significance of multi-level regression coefficients. 
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Figure 1: Spectra of Wavelet Coefficients at Various Levels 

 
Note: The figures from top left to bottom right are spectra of wavelet coefficients |G5()|2, |H5()|2, 

|H4()|2, |H3()|2, |H2()|2, and |H1()|2, respectively. The subscript of |Hj()|2 corresponds to the 

spectrum of the wavelet coefficients at level j. The higher the level j is, the lower the frequencies 

are. The superimposition of these figures on each other offers a hint on the relationship among the 

spectra , and therefore on the Whittle estimator.  

 

3. Simulations and Power Tests 
 

Applying the well-known Daubechies wavelet, simulations and power tests are used to 

evaluate the asymptotic properties of estimators. Our Monte Carlo experiments involve 

series with different time lengths and models with various specifications. As previously 
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differencing. For this reason, the explanatory variable used in our simulation is a non-

stationary process.  Following Equation (5), a time series can be decomposed as follows: 
 

, , ,1t x Jt x Jt x tx S D D      .  

 

The dependent variable can therefore be explained by: 
 

, , ,1 1t x Jt J x Jt J x t ty S D D u         .    (6) 

 

Our multi-level model has an advantage over other models due to its ability to separate 

short term impacts on the dependent variable from that of long term. The impact of the 

smooth part associated with the highest level is reflected by αJ, while the more volatile 

impacts associated with the shorter-term detailed parts are measured by βj. When j 

assumes a smaller value, the associated time span shortens. 
 

Without losing generality, we analyze a disturbance term t following an AR(1) process, 

and evaluate the test size as well as the power of each estimator. Let 

,2 ,2 ,1t x t x t x tx S D D     , 
10.5t t ta    , at ~ NID(0,1) and the true values be  = 2, 2 = 

4, 1 = 4,  = 0.5, 2
 = 1, and J = 2, respectively. The time lengths are set to vary from 

100, 150 to 200 periods, each with 3000 replications.  

 

Simulation results are shown in Table 1. The mean of estimated  of each simulated series 

is very close to the true value. Their corresponding standard errors are 0.4039, 0.3362, and 

0.2789, respectively. As expected, the standard deviation decreases as the time length of a 

simulated series increases. Similar results are obtained for estimates of 1, 2, , and 2
, 

with estimated means around their true values, and standard deviations vary inversely with 

sample size. These results suggest that estimators are consistent. Table 1 also reveals that 

when the time length increases from 100, to 150, and then to 200, the probability of 

rejecting the null hypothesis of  = 2.0 varies from 6.97%, to 7.00%, and then to 5.37%, 

with significance level of 5%. As expected, for the null hypothesis  = 1.5, the rejection 

probability increases to 26.13%, 33.93%, and 41.30%, respectively. Similar results are 

obtained for estimators of 1, 2, , and 2
.   
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Table 1: Significance of Multi-level Regression Coefficients with Short Memory 

Disturbance 
 

H0:  = 0.00 0.50 1.00 1.50 2.0 2.50 3.00 3.50 4.00 Mean Std. Error  

T=100 0.9763  0.9277  0.685  0.2613  0.0697  0.252  0.6743  0.9307  0.9763 2.0056  0.4039 

T=150 0.9783  0.970  0.8213  0.3393  0.070  0.34  0.824  0.9673  0.9777 2.0003  0.3362  

T=200 0.9777  0.9747  0.908  0.4130  0.0537  0.405  0.907  0.9753  0.977 2.0024  0.2789  

H0: 2 = 2.00 2.50 3.00 3.50 4.0 4.50 5.00 5.50 6.00 Mean Std. Error 

T=100 0.258  0.176  0.1137  0.078  0.066  0.0767  0.113  0.1767  0.2567 3.9819  1.9807 

T=150 0.2467  0.173  0.1113  0.07  0.0617  0.0723  0.1027  0.159  0.2437 4.0034  1.9145  

T=200 0.2517  0.1703  0.1083  0.076  0.0653  0.0847  0.116  0.1817  0.2703 3.9780  1.9793  

H0: 1 = 2.00 2.50 3.00 3.50 4.0 4.50 5.00 5.50 6.00 Mean Std. Error 

T=100 0.457  0.3063  0.1807  0.0993  0.0727  0.0993  0.1783  0.304  0.4457 4.0292 1.3583 

T=150 0.4577  0.3107  0.1847  0.0963  0.0727  0.0953  0.1747  0.302  0.4557 4.0077 1.3401 

T=200 0.4783  0.324  0.1947  0.1137  0.084  0.095  0.17  0.3017  0.4397 4.0540 1.3571 

H0:  = -0.30 -1.00 0.10 0.30 0.50 0.70 0.90 1.10 1.30 Mean Std. Error 

T=100 0.542   0.3837  0.1257  0.0107  0.001  0.017  0.1853  0.462  0.576 0.4769  0.1070  

T=150 0.6307   0.51  0.1963  0.011   0.000  0.0263  0.2907  0.5593  0.6457 0.4825   0.0735  

T=200 0.721   0.622  0.3137  0.0173   0.000  0.03  0.4063  0.6407  0.7283 0.4866  0.0622  

H0: 
2 = 0.60 0.70 0.80 0.90 1.0 1.10 1.20 1.30 1.40 Mean Std. Error 

T=100 0.8133  0.4343  0.1397  0.052  0.0973  0.2433  0.4677  0.6727  0.8327 0.9586  0.1399 

T=150 0.9583  0.6983  0.2667  0.0607  0.0883  0.2677  0.536  0.7857  0.9237 0.9700  0.1152  

T=200 0.9917  0.857  0.4123  0.0907  0.0773  0.278  0.6103  0.854  0.9613 0.9791  0.1005  
 

Note:  The size and power tests are based on 3000 replications, and the Daubechies recipe with filter 

length N = 6 is used to test parameter values in 
2 2 2 1 1t t t t ty S D D          and 

2 2 1t t t tx S D D     , where (1 0.5 ) t tL a  , at ~ NID(0,1). True values of these parameters are  

= 2, 2 = 4, 1 = 4,  =0.5, and 2 =1. Time lengths are T=100, T=150, and T = 200. The significance 

level is at 5%, and xt ~ I(1). The means of estimated  at different time lengths (100, 150, and 200) 

are 2.0056, 2.0003, and 2.0024, with standard deviations of 0.4039, 0.3362, and 0.2789, 

respectively. With the true value of  = 2.0, we obtain a consistent estimator for every sample size. 

Similar results have been obtained for 2, 1,  and 2. 

 

4. Empirical Analysis  
 

We apply the stratified model to examine the stock return of Yulon Motor, a well-known 

auto manufacturer in Taiwan. The company, established in 1953, is listed at the Taiwan 
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Stock Exchange. Its market covers Taiwan, mainland China, and Hong Kong. Yulon is 

now one of the largest car makers in that region. The price series used in this study, 

covering a period between January 2, 2007 and December 30, 2011, is obtained from the 

Taiwan Stock Exchange.  The capital market pricing model (CAPM) can be stated as: 
 

, ,( )i t i i m t m tR R R R     ,      (7) 

 

where Ri,t is the rate of return on the ith security at time t, and Rm,t the rate of return on the 

market portfolio. We use the Taiwan Stock Exchange Capital Weighted Index (TAIEX) as 

a proxy of prices of the market portfolio. Let t be the stochastic disturbance. i denotes 

the beta coefficient of the ith security, a measure of the market (or systematic) risk of the 

security, which cannot be eliminated through diversification. It is well known that i 

measures the extent to which the ith security’s rate of return moves with the market return. 

When i > 1, Ri is expected to be more volatile than Rm.  The CAPM, shown in Equation 

(7), can be restated in terms of multi-level relationship: 
  

, , , , , , , ,1 ,1i t i m Jt i s m Jt i J m jt i j m t i tR R S D D D                , 
 

where 
, , , , ,1m t m m Jt m Jt m jt m tR R S D D D           , and i,j indicates the beta 

coefficient of the ith security at level j.  
 

We investigate the systematic risks based on different scales. A Daubechies wavelet with  

N = 6 is applied, and the highest level is J = 4. Applying wavelet analysis, the returns on 

Yulon stocks can be decomposed into several series, as shown in Figure 2. Each series 

reveals a specific interval of densities. The lower the level of j, the higher is the density. 

Using our analysis, investors can be grouped according to their trading strategies. Those 

who focus on long term returns, for example, are more interested in the fluctuations 

displayed by the top diagram of the right-hand side in Figure 2. On the other hand, those 

investors who focus on short-term fluctuations, would pay more attention to the pattern 

revealed at the bottom right. Thus, wavelet analysis allows us to examine the patterns of 

investment behavior even when the subject of investigation is the returns on a single stock.  
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Figure 2: Multi-level Decomposition of YULON Returns 

 
 

Note: The left top figure shows the original daily returns of TSMC, from January 2, 2007 to 

December 30, 2011. The others reveal the decomposed returns at different levels. The higher is the 

level, the lower is the frequency.  
 

Applying BIC, we can choose the best model for analyzing the relationship between 

Yolon returns and market returns. Table 2 points out that the model with MA(1) 

residuals is our choice. 
 

Table 2: The Identification of ARMA Model Based on BIC 
 

ARMA(p,q) q = 0 q = 1 q = 2 

p = 0 -7.22888 -7.73140 -7.72591 

p = 1 -7.73139 -7.72572 -7.72083 

p = 2 -7.72601 -7.72098 -7.71550 
 

Note: BIC is used to determine the proper orders of ARMA for modeling YULON returns at J = 4. 

Based on the BIC criterion, MA(1) should be chosen. The Daubechies wavelet is with N = 6. 
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The results can be displayed as follows: 
 

, ,4 ,4 ,3 ,2 ,1
(0.1646) (0.2292) (0.1407) (0.1113) (0.0631)

ˆ1.4529 1.3280 1.1345 1.4298 1.0587i t i m t m t m t m t m t tR R S D D D D             

 

where 
1

(0.0456)
ˆ ˆ ˆ 0.0177t t ta a    and ˆ 0.0205a  . 

 

Based on wavelet analysis, the frequency-based trading strategies are associated with the 

following scales or investment horizon: less than 6 trading days; 6 to 11 days; 12 to 23 

days; 24 to 47 days; and over 48 days. The above equation displays the systematic risk 

associated with each of the strategies. For instance, those who trade securities with an 

investment horizon of less than six days, experience a systematic risk of 1.0587 with a 

standard error is 0.0631. Those who prefer an investment horizon between 6 and 11 

trading days encounter a systematic risk of 1.4298 with a standard error is 0.1113. The 

corresponding t statistic for comparing these two risk measures is 2.90052 (= 
1.4298−1.0587

 0.06312+ 0.1113 2
) at the significance level of 5%. Thus, our analysis reveals the systematic 

risk associating with each investment horizon or trading strategy.   
 

5. Concluding Remarks 
 

The proposition that economic agents are heterogeneous with bounded rationality has been 

confirmed by psychological experiments. Patterns of economic behavior of these agents 

are the subjects of study of heterogeneous agent models. The modeling efforts, however, 

focus basically on simulation. 
 

In this paper, we go beyond simulation. Applying MODWT on time series, we are able to 

estimate multi-level correlations between returns on a stock and returns on the market 

portfolio. The error term has the flexibility to incorporate both long memory as well as 

short memory. Monte Carlo simulations suggest that our Whittle estimator is consistent 

and powerful. We find that systematic risk varies as the trading strategy changes its 

investment horizons. In addition, this risk does not change in proportion to the investment 

horizon. 
 

The well-established capital asset pricing model is an analysis based on time domain. 

When the relationship between the returns on a single stock and the market return is 

examined in both time and frequency domain, the pricing of systematic risk varies 

according to investment horizon. Thus, our empirical results beg for an alternative 

investment theory to explain the stratified market phenomenon.  

 

 



Empirical Economics Review 7(1): (March 2017)                                               13 
 

References 

Barberis, N. and R. Thaler, 2003, A Survey of Behavioral Finance, in M. Harris and R. 

Stulz, eds., Handbook of the Economics of Finance, Elsevier, 1052-1121. 

Beran, J., 1994, Statistics for long memory processes, Chapman & Hall, International 

Thompson, Inc. 

Daubenchies, I., 1992, Ten lectures on wavelets, the Society for Industrial and Applied  

Mathematics, Philadelphia, Pennsylvania. 

Donoho, D.L., and I.M. Johnstone, 1994, Ideal spatial adaptation by wavelet shrinkage, 

Biometrika, 81, 3, 425-55.  

Fay, G., E. Moulines, F. Roueff and M.S. Taqqu, 2009, Estimators of long-memory: 

Fourier versus wavelets, Journal of Econometrics, 151, 159-177. 

Fryzlewics, P., S.V. Bellegem, and R.V. Sachs, 2003, Forecasting non-stationary time 

series by wavelet process modeling, Annual Ins. Statist. Math, 55, 4, 737-764. 

Gao, H.Y., 1997, Choice of threshold for wavelet shrinkage estimate of the spectrum, 

Journal of Time Series Analysis, 18, 3, 231-251. 

Gençay, R., F. Selçuk and B. Whitcher, 2001, An introduction to wavelets and other 

filtering methods in Finance and Economics, Academic Press. 

He, T. X. and E. B. Lin, 2014, Wavelet analysis and its applications, numerical methods,  

computer graphics and economics, World Scientific Publishing. 

Hommes, C., 2006, Heterogeneous agent models in economics and finance, in L. 

Tesfatsion and K. Judd, eds., Handbook of Computational Economics, Edition 1, 2, 2, 

1109-1186. 

In, F. and S. Kim, 2013, An introduction to wavelet theory in finance: a wavelet multiscale 

approach, World Scientific Publishing. 

Jensen, M.J., 1999, Using wavelets to obtain a consistent ordinary least squares estimator 

of the long-memory parameter. Journal of Forecasting, 18, 17-32. 

Jensen, M.J., 2000, An alternative maximum likelihood estimator of long memory 

processes using compactly supported wavelets. Journal of Economic Dynamics and 

Control, 24, 361-387.  

LeBaron, B., 2006, Agent-based computational finance. in L. Tesfatsion and K. Judd, 

eds., Handbook of Computational Economics, Edition 1, 2, 2, 1187–1233. 

http://ideas.repec.org/h/eee/hecchp/2-23.html
http://ideas.repec.org/h/eee/hecchp/2-23.html
http://ideas.repec.org/b/eee/hecomp/2.html
http://ideas.repec.org/b/eee/hecomp/2.html


Empirical Economics Review 7(1): (March 2017)                                               14 
 

Lee, J., and Y. Hong, 2001, Testing for serial correlation of unknown form using wavelet 

methods, Econometric Theory, 17, 386-423.  

Mallat, S., 2008, A wavelet tour of signal processing, the sparse way. 3rd ed., Academic 

Press. 

Moulines, E., Foueff, F., and M.S. Taqqu, 2006, On the spectral density of the wavelet 

coefficients of long-memory time series with application to the log-regression estimation 

of the memory parameter, Journal of Time Series Analysis, Vol. 28, No. 2, 155-187.  

Moulines, E., Roueff, F., and M.S. Taqqu, 2008, A wavelet whittle estimator of the 

memory parameter of a non-stationary Gaussian time series, The Annals of Statistics, 36, 

4, 1925-1956.  

Nason, G., and T. Sapatinas, 2002, Wavelet packet transfer function modeling ofnon-

stationary time series, Statistics and Computing, 12, 45–56.  

Neumann, M.H., 1996, Spectral density estimation via nonlinear wavelet methods for 

stationary non-Gaussian time series, Journal of Time Series Analysis, 17, 601-633.  

Percival, D.B., and A.T. Walden, 2000, Wavelet Methods for Time Series Analysis, 

Cambridge University Press.  

Press, W.H, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Numerical 

Recipes: The Art of Scientific Computing, 3
rd

 ed., New York: Cambridge University Press, 

Priestley, M.B., 1981, Spectral Analysis and Time Series, New York: Academic Press.  

Priestley, M.B., 1996, Wavelets and time-dependent spectral analysis, Journal of Time 

Series Analysis, 17, 1, 85-103.  

Ramsey, J., 1999, The contribution of wavelets to the analysis of economic and financial 

data, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 

Vol. 357, No. 1760, 2593-2606. 

Strang, G. and T. Nguyen, 1996, Wavelets and Filter Banks, 2
nd

 ed., Wellesley College. 


